Serveur d'exploration sur les peptides biopesticides

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Augmentation of transport for cisplatin-glutathione adduct in cisplatin-resistant cancer cells.

Identifieur interne : 004111 ( Main/Exploration ); précédent : 004110; suivant : 004112

Augmentation of transport for cisplatin-glutathione adduct in cisplatin-resistant cancer cells.

Auteurs : S. Goto [Japon] ; K. Yoshida ; T. Morikawa ; Y. Urata ; K. Suzuki ; T. Kondo

Source :

RBID : pubmed:7671239

Descripteurs français

English descriptors

Abstract

We studied the outward transport of cisplatin (CDDP)-glutathione (GSH) adduct (DDP-GSH) in CDDP-resistant cancer cells. Incubating the cells in the presence of CDDP resulted in the formation of an adduct with GSH and subsequent transport outside the cells. We used human colonic cancer cells sensitive (HCT8) and resistant (HCT8DDP) to CDDP and human ovarian cancer cells sensitive (A2780) and resistant (A2780DDP) to CDDP as materials. The concentration of intracellular GSH was higher in the resistant cells (118.7 +/- 5.9 nmol/10(6) HCT8DDP versus 19.0 +/- 1.0 nmol/10(6) HCT8 and 24.1 +/- 1.2 nmol/10(6) A2780DDP versus 9.4 +/- 0.5 nmol/10(6) A2780, respectively). The activity of the GSH-synthesizing enzyme, gamma-glutamylcysteine synthetase (gamma-GCS) was higher in the CDDP-resistant cells (7.1 +/- 0.2 milliunits/10(6) HCT8DDP versus 2.2 +/- 0.1 milliunits/10(6) HCT8 and 2.9 +/- 0.1 milliunits/10(6) A2780DDP versus 1.4 +/- 0.1 milliunits/10(6) A2780, respectively). Furthermore, immunological levels of gamma-GCS and the expression of gamma-GCS mRNA were higher in these CDDP-resistant cells than those in the control cells, in accordance with the change in the concentration of GSH. DDP-GSH transport increased in the CDDP-resistant colonic cancer cells by 219% (324 +/- 12 fmol/10(6) HCT8DDP cells/min versus 148 +/- 11 fmol/10(6) HCT8 cells/min) and the CDDP-resistant ovarian cancer cells by 126% (127 +/- 7 fmol/10(6) A2780DDP cells/min versus 101 +/- 8 fmol/10(6) A2780 cells/min). DDP-GSH transport was also estimated using inside-out vesicles from these cells. The active transport of DDP-GSH was 243% of HCT8 in HCT8DDP and 121% of A2780 in A2780DDP. These data suggest that the acquisition of CDDP resistance in cancer cells is due partly to the increase in the transport of DDP-GSH outside the cells as well as the increase in the concentration of GSH. Immunological estimation of the membrane proteins against human erythrocyte glutathione S-conjugate-stimulated Mg(2+)-ATPase sera resulted in no apparent cross-reactivity, suggesting that there are several transport systems for DDP-GSH.

PubMed: 7671239


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Augmentation of transport for cisplatin-glutathione adduct in cisplatin-resistant cancer cells.</title>
<author>
<name sortKey="Goto, S" sort="Goto, S" uniqKey="Goto S" first="S" last="Goto">S. Goto</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Pathological Biochemistry, Nagasaki University School of Medicine, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Pathological Biochemistry, Nagasaki University School of Medicine</wicri:regionArea>
<wicri:noRegion>Nagasaki University School of Medicine</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yoshida, K" sort="Yoshida, K" uniqKey="Yoshida K" first="K" last="Yoshida">K. Yoshida</name>
</author>
<author>
<name sortKey="Morikawa, T" sort="Morikawa, T" uniqKey="Morikawa T" first="T" last="Morikawa">T. Morikawa</name>
</author>
<author>
<name sortKey="Urata, Y" sort="Urata, Y" uniqKey="Urata Y" first="Y" last="Urata">Y. Urata</name>
</author>
<author>
<name sortKey="Suzuki, K" sort="Suzuki, K" uniqKey="Suzuki K" first="K" last="Suzuki">K. Suzuki</name>
</author>
<author>
<name sortKey="Kondo, T" sort="Kondo, T" uniqKey="Kondo T" first="T" last="Kondo">T. Kondo</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1995">1995</date>
<idno type="RBID">pubmed:7671239</idno>
<idno type="pmid">7671239</idno>
<idno type="wicri:Area/Main/Corpus">004067</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">004067</idno>
<idno type="wicri:Area/Main/Curation">004067</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">004067</idno>
<idno type="wicri:Area/Main/Exploration">004067</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Augmentation of transport for cisplatin-glutathione adduct in cisplatin-resistant cancer cells.</title>
<author>
<name sortKey="Goto, S" sort="Goto, S" uniqKey="Goto S" first="S" last="Goto">S. Goto</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Pathological Biochemistry, Nagasaki University School of Medicine, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Pathological Biochemistry, Nagasaki University School of Medicine</wicri:regionArea>
<wicri:noRegion>Nagasaki University School of Medicine</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yoshida, K" sort="Yoshida, K" uniqKey="Yoshida K" first="K" last="Yoshida">K. Yoshida</name>
</author>
<author>
<name sortKey="Morikawa, T" sort="Morikawa, T" uniqKey="Morikawa T" first="T" last="Morikawa">T. Morikawa</name>
</author>
<author>
<name sortKey="Urata, Y" sort="Urata, Y" uniqKey="Urata Y" first="Y" last="Urata">Y. Urata</name>
</author>
<author>
<name sortKey="Suzuki, K" sort="Suzuki, K" uniqKey="Suzuki K" first="K" last="Suzuki">K. Suzuki</name>
</author>
<author>
<name sortKey="Kondo, T" sort="Kondo, T" uniqKey="Kondo T" first="T" last="Kondo">T. Kondo</name>
</author>
</analytic>
<series>
<title level="j">Cancer research</title>
<idno type="ISSN">0008-5472</idno>
<imprint>
<date when="1995" type="published">1995</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antineoplastic Agents (metabolism)</term>
<term>Biological Transport (MeSH)</term>
<term>Cisplatin (metabolism)</term>
<term>Cisplatin (pharmacology)</term>
<term>Drug Resistance (MeSH)</term>
<term>Glutamate-Cysteine Ligase (genetics)</term>
<term>Glutathione (metabolism)</term>
<term>Glutathione Peroxidase (metabolism)</term>
<term>Glutathione Transferase (metabolism)</term>
<term>Humans (MeSH)</term>
<term>RNA, Messenger (analysis)</term>
<term>Tumor Cells, Cultured (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN messager (analyse)</term>
<term>Antinéoplasiques (métabolisme)</term>
<term>Cellules cancéreuses en culture (MeSH)</term>
<term>Cisplatine (métabolisme)</term>
<term>Cisplatine (pharmacologie)</term>
<term>Glutamate-cysteine ligase (génétique)</term>
<term>Glutathion (métabolisme)</term>
<term>Glutathione peroxidase (métabolisme)</term>
<term>Glutathione transferase (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Résistance aux substances (MeSH)</term>
<term>Transport biologique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glutamate-Cysteine Ligase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Antineoplastic Agents</term>
<term>Cisplatin</term>
<term>Glutathione</term>
<term>Glutathione Peroxidase</term>
<term>Glutathione Transferase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Cisplatin</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>ARN messager</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Glutamate-cysteine ligase</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Antinéoplasiques</term>
<term>Cisplatine</term>
<term>Glutathion</term>
<term>Glutathione peroxidase</term>
<term>Glutathione transferase</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Cisplatine</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biological Transport</term>
<term>Drug Resistance</term>
<term>Humans</term>
<term>Tumor Cells, Cultured</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cellules cancéreuses en culture</term>
<term>Humains</term>
<term>Résistance aux substances</term>
<term>Transport biologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We studied the outward transport of cisplatin (CDDP)-glutathione (GSH) adduct (DDP-GSH) in CDDP-resistant cancer cells. Incubating the cells in the presence of CDDP resulted in the formation of an adduct with GSH and subsequent transport outside the cells. We used human colonic cancer cells sensitive (HCT8) and resistant (HCT8DDP) to CDDP and human ovarian cancer cells sensitive (A2780) and resistant (A2780DDP) to CDDP as materials. The concentration of intracellular GSH was higher in the resistant cells (118.7 +/- 5.9 nmol/10(6) HCT8DDP versus 19.0 +/- 1.0 nmol/10(6) HCT8 and 24.1 +/- 1.2 nmol/10(6) A2780DDP versus 9.4 +/- 0.5 nmol/10(6) A2780, respectively). The activity of the GSH-synthesizing enzyme, gamma-glutamylcysteine synthetase (gamma-GCS) was higher in the CDDP-resistant cells (7.1 +/- 0.2 milliunits/10(6) HCT8DDP versus 2.2 +/- 0.1 milliunits/10(6) HCT8 and 2.9 +/- 0.1 milliunits/10(6) A2780DDP versus 1.4 +/- 0.1 milliunits/10(6) A2780, respectively). Furthermore, immunological levels of gamma-GCS and the expression of gamma-GCS mRNA were higher in these CDDP-resistant cells than those in the control cells, in accordance with the change in the concentration of GSH. DDP-GSH transport increased in the CDDP-resistant colonic cancer cells by 219% (324 +/- 12 fmol/10(6) HCT8DDP cells/min versus 148 +/- 11 fmol/10(6) HCT8 cells/min) and the CDDP-resistant ovarian cancer cells by 126% (127 +/- 7 fmol/10(6) A2780DDP cells/min versus 101 +/- 8 fmol/10(6) A2780 cells/min). DDP-GSH transport was also estimated using inside-out vesicles from these cells. The active transport of DDP-GSH was 243% of HCT8 in HCT8DDP and 121% of A2780 in A2780DDP. These data suggest that the acquisition of CDDP resistance in cancer cells is due partly to the increase in the transport of DDP-GSH outside the cells as well as the increase in the concentration of GSH. Immunological estimation of the membrane proteins against human erythrocyte glutathione S-conjugate-stimulated Mg(2+)-ATPase sera resulted in no apparent cross-reactivity, suggesting that there are several transport systems for DDP-GSH.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">7671239</PMID>
<DateCompleted>
<Year>1995</Year>
<Month>10</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0008-5472</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>55</Volume>
<Issue>19</Issue>
<PubDate>
<Year>1995</Year>
<Month>Oct</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Cancer research</Title>
<ISOAbbreviation>Cancer Res</ISOAbbreviation>
</Journal>
<ArticleTitle>Augmentation of transport for cisplatin-glutathione adduct in cisplatin-resistant cancer cells.</ArticleTitle>
<Pagination>
<MedlinePgn>4297-301</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>We studied the outward transport of cisplatin (CDDP)-glutathione (GSH) adduct (DDP-GSH) in CDDP-resistant cancer cells. Incubating the cells in the presence of CDDP resulted in the formation of an adduct with GSH and subsequent transport outside the cells. We used human colonic cancer cells sensitive (HCT8) and resistant (HCT8DDP) to CDDP and human ovarian cancer cells sensitive (A2780) and resistant (A2780DDP) to CDDP as materials. The concentration of intracellular GSH was higher in the resistant cells (118.7 +/- 5.9 nmol/10(6) HCT8DDP versus 19.0 +/- 1.0 nmol/10(6) HCT8 and 24.1 +/- 1.2 nmol/10(6) A2780DDP versus 9.4 +/- 0.5 nmol/10(6) A2780, respectively). The activity of the GSH-synthesizing enzyme, gamma-glutamylcysteine synthetase (gamma-GCS) was higher in the CDDP-resistant cells (7.1 +/- 0.2 milliunits/10(6) HCT8DDP versus 2.2 +/- 0.1 milliunits/10(6) HCT8 and 2.9 +/- 0.1 milliunits/10(6) A2780DDP versus 1.4 +/- 0.1 milliunits/10(6) A2780, respectively). Furthermore, immunological levels of gamma-GCS and the expression of gamma-GCS mRNA were higher in these CDDP-resistant cells than those in the control cells, in accordance with the change in the concentration of GSH. DDP-GSH transport increased in the CDDP-resistant colonic cancer cells by 219% (324 +/- 12 fmol/10(6) HCT8DDP cells/min versus 148 +/- 11 fmol/10(6) HCT8 cells/min) and the CDDP-resistant ovarian cancer cells by 126% (127 +/- 7 fmol/10(6) A2780DDP cells/min versus 101 +/- 8 fmol/10(6) A2780 cells/min). DDP-GSH transport was also estimated using inside-out vesicles from these cells. The active transport of DDP-GSH was 243% of HCT8 in HCT8DDP and 121% of A2780 in A2780DDP. These data suggest that the acquisition of CDDP resistance in cancer cells is due partly to the increase in the transport of DDP-GSH outside the cells as well as the increase in the concentration of GSH. Immunological estimation of the membrane proteins against human erythrocyte glutathione S-conjugate-stimulated Mg(2+)-ATPase sera resulted in no apparent cross-reactivity, suggesting that there are several transport systems for DDP-GSH.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Goto</LastName>
<ForeName>S</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Pathological Biochemistry, Nagasaki University School of Medicine, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yoshida</LastName>
<ForeName>K</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Morikawa</LastName>
<ForeName>T</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Urata</LastName>
<ForeName>Y</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Suzuki</LastName>
<ForeName>K</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kondo</LastName>
<ForeName>T</ForeName>
<Initials>T</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Cancer Res</MedlineTA>
<NlmUniqueID>2984705R</NlmUniqueID>
<ISSNLinking>0008-5472</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000970">Antineoplastic Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.9</RegistryNumber>
<NameOfSubstance UI="D005979">Glutathione Peroxidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.5.1.18</RegistryNumber>
<NameOfSubstance UI="D005982">Glutathione Transferase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 6.3.2.2</RegistryNumber>
<NameOfSubstance UI="D005721">Glutamate-Cysteine Ligase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>Q20Q21Q62J</RegistryNumber>
<NameOfSubstance UI="D002945">Cisplatin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000970" MajorTopicYN="N">Antineoplastic Agents</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001692" MajorTopicYN="N">Biological Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002945" MajorTopicYN="N">Cisplatin</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004351" MajorTopicYN="N">Drug Resistance</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005721" MajorTopicYN="N">Glutamate-Cysteine Ligase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005979" MajorTopicYN="N">Glutathione Peroxidase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005982" MajorTopicYN="N">Glutathione Transferase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014407" MajorTopicYN="N">Tumor Cells, Cultured</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1995</Year>
<Month>10</Month>
<Day>1</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1995</Year>
<Month>10</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1995</Year>
<Month>10</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">7671239</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Kondo, T" sort="Kondo, T" uniqKey="Kondo T" first="T" last="Kondo">T. Kondo</name>
<name sortKey="Morikawa, T" sort="Morikawa, T" uniqKey="Morikawa T" first="T" last="Morikawa">T. Morikawa</name>
<name sortKey="Suzuki, K" sort="Suzuki, K" uniqKey="Suzuki K" first="K" last="Suzuki">K. Suzuki</name>
<name sortKey="Urata, Y" sort="Urata, Y" uniqKey="Urata Y" first="Y" last="Urata">Y. Urata</name>
<name sortKey="Yoshida, K" sort="Yoshida, K" uniqKey="Yoshida K" first="K" last="Yoshida">K. Yoshida</name>
</noCountry>
<country name="Japon">
<noRegion>
<name sortKey="Goto, S" sort="Goto, S" uniqKey="Goto S" first="S" last="Goto">S. Goto</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/BiopestPeptidV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004111 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004111 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    BiopestPeptidV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:7671239
   |texte=   Augmentation of transport for cisplatin-glutathione adduct in cisplatin-resistant cancer cells.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:7671239" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a BiopestPeptidV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 19:22:35 2020. Site generation: Thu Nov 19 19:33:26 2020